Lección 8Triángulos semejantes
Examinemos triángulos semejantes.
Metas de aprendizaje:
- Sé como decidir si dos triángulos son semejantes con solo mirar las medidas de sus ángulos.
8.1 Expresiones equivalentes
Escribe tres expresiones distintas que sean igual a 20. Cada expresión debe incluir solo estos tres números: , y .
8.2 Hagamos ángulos y triángulos de pasta
El profesor te dará pasta seca y un conjunto de ángulos.
- Crea un triángulo usando tres piezas de pasta y el ángulo . Tu triángulo tiene que incluir el ángulo que se te ha dado, pero por lo demás eres libre de hacer el triángulo que quieras. Pega con cinta tu triángulo de pasta a una hoja de papel para que no se mueva.
- Después de haber creado tu triángulo, mide la longitud de cada lado con una regla y escribe en la hoja la longitud junto a cada lado. Después, mide los ángulos aproximando al múltiplo de 5 grados más cercano usando un transportador y anota estas medidas en tu hoja.
-
Encuentra a otros dos compañeros en el salón que tengan el mismo ángulo y compara tu triángulo con el de ellos. ¿En qué se parecen? ¿En qué se diferencian? ¿Son triángulos congruentes?, ¿son semejantes?
-
¿Cómo decidiste si eran o no congruentes o semejantes?
- Ahora, usa más pasta y los ángulos , y para crear otro triángulo. Pega este triángulo de pasta con cinta en una hoja de papel diferente.
- Después de haber creado tu triángulo, mide la longitud de cada lado con una regla y escribe en la hoja la longitud junto a cada lado. Después, mide los ángulos aproximando al múltiplo de 5 grados más cercano usando un transportador y anota estas medidas en tu hoja.
-
Encuentra otros dos compañeros en el salón que hayan utilizado los mismos ángulos y compara tu triángulo con el de ellos. ¿En qué se parecen? ¿En qué se diferencian? ¿Son triángulos congruentes?, ¿son semejantes?
-
¿Cómo decidiste si eran o no congruentes o semejantes?
-
Este es el triángulo . Parte una nueva pieza de pasta que tenga una longitud diferente a la del segmento .
- Pega la pieza de pasta con cinta de manera que quede encima del segmento de recta con un extremo de la pasta en (si no cabe en la hoja, pártela más). Marca el otro extremo de la pieza de pasta con .
- Pega una pieza de pasta completa con cinta, con un extremo en , formando un ángulo congruente a .
- Pega una pieza de pasta completa con cinta sobre el segmento de recta con un extremo de la pasta en . Llama al punto en el que se encuentran las dos piezas de pasta completas.
-
¿Tu nuevo triángulo de pasta es semejante a ? Explica tu razonamiento.
-
¿Si la pieza de pasta que partiste tuviera una longitud diferente, el triángulo de pasta todavía sería semejante a ? Explica tu razonamiento.
¿Estás listo para más?
Los cuadriláteros y tienen cuatro ángulos que miden , , y . ¿ y tienen que ser semejantes?
8.3 Figuras semejantes en un pentágono regular
-
Este diagrama tiene varios triángulos que son semejantes al triángulo .
- Se usaron tres factores de escala diferentes para hacer los triángulos semejantes a . En el diagrama, encuentra al menos un triángulo de cada tamaño que sea semejante a .
- Explica cómo sabes que cada uno de estos tres triángulos es semejante a .
- Encuentra un triángulo en el diagrama que no sea semejante a .
¿Estás listo para más?
Resumen de la lección 8
Antes, aprendimos que dos polígonos son semejantes cuando existe una secuencia de traslaciones, rotaciones, reflexiones y dilataciones que llevan un polígono al otro. Cuando los polígonos son triángulos, solo debemos verificar que ambos triángulos tengan dos ángulos correspondientes que sean congruentes para mostrar que son semejantes, ¿puedes decir por qué?
Este es un ejemplo. Cada uno de los triángulos y tiene un ángulo de 30 grados y un ángulo de 45 grados.
Podemos trasladar a y después rotar para que los dos ángulos de 30 grados estén alineados, obteniendo este diagrama:
Ahora una dilatación con centro en y un factor de escala adecuado llevarán a . Esta dilatación también lleva a , mostrando así que los triángulos y son semejantes.Problemas de práctica de la lección 8
En cada pareja se dan algunos de los ángulos en grados de dos triángulos. Usa la información para decidir si los triángulos son semejantes o no. Explica cómo lo sabes.
-
Triángulo A: 53, 71, ___; Triángulo B: 53, 71, ___.
-
Triángulo C: 90, 37, ___; Triángulo D: 90, 53, ___.
-
Triángulo E: 63, 45, ____; Triángulo F: 14, 71, ____.
-
Triángulo G: 121, ___, ___; Triángulo H: 70, ___, ___.
-
-
Dibuja dos triángulos equiláteros que no sean congruentes.
- Mide las longitudes de los lados y los ángulos de tus triángulos. ¿Los dos triángulos son semejantes?
-
¿Crees que dos triángulos equiláteros serán semejantes siempre, algunas veces o nunca? Explica tu razonamiento.
-
En la figura, el segmento de recta es paralelo al segmento de recta .
Explica por qué es semejante a .
El cuadrilátero del diagrama es un paralelogramo. Llama a la imagen de luego de realizar una dilatación con centro en un punto O (que no se muestra) y factor de escala 3.
¿Cuál de las siguientes afirmaciones es verdadera?
- No se puede determinar a partir de la información dada
Describe una secuencia de transformaciones para la cual el cuadrilátero P sea la imagen del cuadrilátero Q.