Lección 14Desarrollos planos y área de superficie

Usemos desarrollos planos para encontrar el área de superficie de poliedros.

Metas de aprendizaje:

  • Dado el desarrollo plano de un prisma o de una pirámide, puedo calcular el área de su superficie.
  • Puedo asociar poliedros con sus desarrollos planos y explicar cómo puedo saberlo.

14.1 Relacionemos desarrollos planos

Cada uno de los siguientes desarrollos planos se puede armar para formar un poliedro. Relaciona cada desarrollo plano con su poliedro correspondiente y di el nombre del poliedro. Prepárate para explicar cómo sabes que un desarrollo plano va con un poliedro.

Five nets of polyhedra labeled 1--5.
Five polyhedra labeled A--E.

14.2 Usemos desarrollos planos para encontrar el área de superficie

Tu profesor te dará los desarrollos planos para recortar y armar tres poliedros.

Three nets on a grid, labeled A, B, and C. Net A is composed of two rectangles that are 5 units tall by 6 units wide, two that are 5 units high and one unit wide, and two that are one unit high and six units wide. Net B is a square with a side length of 4 units and is surrounded by triangles that are four units wide at the base and four units high. Net C is a square with a side length of 3, a rectangle 3 units wide and 5 units high, another rectangle that is 3 units wide and 4 units tall, and two triangles, one on either side, that are three units tall by four units across.
  1. Nombra el poliedro que forma cada desarrollo plano una vez esté armado.

    A:

    B:

    C:

  2. Recorta los desarrollos planos y úsalos para construir figuras tridimensionales.

  3. Encuentra el área de superficie de cada poliedro. Explica tu razonamiento con claridad.

¿Estás listo para más?

  1. Para cada uno de estos desarrollos planos, decide si puede ensamblarse para formar un prisma rectangular.

    Four possible nets labeled A--D.
  2. Para cada uno de estos desarrollos planos, decide si puede doblarse para formar un prisma triangular.

    Four possible nets labeled A--D.

Resumen de la lección 14

El desarrollo plano de una pirámide tiene un polígono en la base. Los polígonos restantes son triángulos. A continuación se presenta una pirámide pentagonal y su desarrollo plano.

The net for this pentagonal pyramid is a pentagon surrounded by triangles on each side.

El desarrollo plano de un prisma tiene dos copias del polígono que forma la base. Los polígonos restantes son rectángulos. A continuación se presenta un prisma pentagonal y su desarrollo plano.

The net for this pentagonal prism is a pentagon surrounded by rectangles on each side with an additional pentagon attached to the opposite side of one of the rectangles.

En un prisma rectangular hay tres pares de rectángulos paralelos e idénticos. Cualquier par idéntico de estos rectángulos puede ser la base.

Three images of a rectangular prism. Each image has one set of opposing sides of the polyhedron shaded and labeled “base."
Como el desarrollo plano muestra todas las caras de un poliedro, podemos usarlo para encontrar su área de superficie.

Por ejemplo, el desarrollo plano de un prisma rectangular muestra tres pares de rectángulos: 4 unidades por 2 unidades, 3 unidades por 2 unidades y 4 unidades por 3 unidades.

A polyhedron made up of six rectangles. Two rectangles are 8 square units in area, 2 are 6 square units, and 2 are 12 square units.

El área de superficie del prisma rectangular es 52 unidades cuadradas porque: 8+8+6+6+12+12=52 .

Problemas de práctica de la lección 14

  1. ¿Se puede armar un cubo con el siguiente desarrollo plano? Explica cómo lo sabes. Etiqueta las partes del desarrollo plano con letras o números si esto sirve para tu explicación.  

    1. ¿Qué poliedro se puede armar a partir de este desarrollo plano? Explica cómo lo sabes. 
    1. Encuentra el área de superficie de este poliedro. Muestra tu razonamiento. 
  2. Estos son dos desarrollos planos. Mai dijo que ambos desarrollos planos se pueden armar para formar el mismo prisma triangular. ¿Estas de acuerdo? Explica o muestra tu razonamiento.

  3. Estas son dos figuras tridimensionales. 

    Indica si cada una de las siguientes afirmaciones describe la figura A, la figura B, ambas o ninguna.

    1. Esta figura es un poliedro.
    2. Esta figura tiene caras triangulares.
    3. En esta figura hay más vértices que aristas.
    4. Esta figura tiene caras rectangulares.
    1. Esta figura es una pirámide.
    2. Hay exactamente una cara que puede ser la base de esta figura. 
    3. La base de esta figura es un triángulo.
    4. Esta figura tiene dos caras idénticas y paralelas que pueden ser la base. 
  4. Selecciona todas la unidades que se pueden usar para medir áreas de superficies. Explica por qué las otras unidades no pueden usarse para medir áreas de superficies. 

    1. Metros cuadrados
    2. Pies
    3. Centímetros
    4. Pulgadas cúbicas
    5. Pulgadas cuadradas
    6. Pies cuadrados
  5. Encuentra el área de este polígono. Muestra tu razonamiento.

    An image of a 7-sided polygon. The bottom side of the polygon is six units long, and extends out to a total width of 10 units, and a central height of 6 units.