Lección 10Encontremos e interpretemos la media como el punto de equilibrio

Veamos otra manera de entender la media de un conjunto de datos.

Metas de aprendizaje:

  • Puedo describir qué nos dice la media en el contexto de los datos.
  • Puedo explicar cómo la media representa un punto de equilibrio para los datos en un diagrama de puntos.

10.1 Cuál es diferente: división

¿Cuál expresión es diferente? Prepárate pata explicar tu razonamiento.

\frac {8+8+4+4}{4}

\frac {10+10+4}{4}

\frac {9+9+5+5}{4}

\frac {6+6+6+6+6}{5}

10.2 Tiempos de recorrido (Parte 1)

Este es el conjunto de datos de una lección anterior, que muestra cuánto tarda Diego en ir a la escuela caminando, en minutos, durante 5 días. La media del número de minutos es 11.

  1. Representa los datos de Diego en un diagrama de puntos. Señala la ubicación de la media con un triángulo ( \Delta ).
12 7 13 9 14
  1. La media también se puede ver como una medida de centro que equilibra los puntos de un conjunto de datos. Si encontramos las distancias entre cada punto y la media, sumamos las distancias a cada lado de la media y comparamos las dos sumas, podemos ver este equilibrio.

    1. Anota la distancia entre cada punto y 11, y su ubicación con respecto a 11.

      tiempo en minutos distancia al 11 ¿a la izquierda de 11 o a la derecha de 11?
      12
      7
      13
      9
      14
    2. Suma de las distancias a la izquierda de 11:___________ Suma de las distancias a la derecha de 11:___________

      ¿Qué observas sobre las dos sumas?

  2. ¿Puede un punto que no sea la media producir sumas de las distancias con esta característica?

    Investiguemos si 10 puede producir sumas semejantes a las de 11.

    1. Completa la tabla con las distancias entre 10 y cada punto.
      tiempo en minutos distancia al 10 ¿a la izquierda de 10 o a la derecha de 10?
      12
      7
      13
      9
      14
    2. Suma de las distancias a la izquierda de 10:___________ Suma de las distancias a la derecha de 10:___________

      ¿Qué observas sobre las dos sumas?

  3. Según tu trabajo hasta el momento, explica por qué la media se puede considerar como un punto de equilibrio para el conjunto de datos.

10.3 Tiempo de recorrido (Parte 2)

  1. Estos diagramas de puntos muestran cuánto tardaron en minutos los recorridos de Diego a la escuela (que ya habías visto antes) y cuánto tardaron en minutos los recorridos de Andre a la escuela. Los diagramas de puntos incluyen las medias de cada conjunto de datos, señaladas con triángulos.

    Two dot plots labeled “Diego’s travel time in minutes” and “Andre’s travel time in minutes” are indicated. Each dot plot has the numbers 7 through 22 indicated.  The dot plot “Diego’s travel time in minutes” has the following data:  7 minutes, 1 dot. 9 minutes, 1 dot. 11 minutes, 1 triangle. 12 minutes, 1 dot. 13 minutes, 1 dot. 14 minutes, 1 dot.  The dot plot “Andre’s travel time in minutes” has the following data:  12 minutes, 2 dots. 13 minutes, 1 dot. 14 minutes, 1 triangle. 16 minutes, 1 dot. 17 minutes, 1 dot.
    1. ¿Cuál de los dos conjuntos de datos tiene un media más grande? En este contexto, ¿qué nos dice una media más grande?
    2. ¿Cuál de los dos conjuntos de datos tiene sumas de las distancias más grandes a la izquierda y a la derecha? ¿Qué nos dicen estas sumas sobre la variación en los tiempos de recorrido de Diego y Andre?
  2. Este diagrama de puntos muestra la duración de los viajes de Lin a la escuela.

    A dot plot for “travel time in minutes.” The numbers 7 through 22, are indicated. The data are as follows:  8 minutes, 1 dot. 11 minutes, 2 dots. 18 minutes, 1 dot. 22 minutes, 1 dot.
    1. Calcula la media de los tiempos de recorrido de Lin.
    2. Completa la tabla con la distancia entre cada punto y la media, y con la ubicación de cada punto con respecto a la media.
      tiempo en minutos distancia a la media  ¿a la izquierda o a la derecha de la media?
      22
      18
      11
      8
      11
    3. Encuentra la suma de las distancias a la izquierda de la media y la suma de las distancias a la derecha de la media.
    4. Usa tu trabajo para comparar los tiempos de recorrido de Lin con los de Andre. ¿Qué puedes decir sobre el tiempo promedio de los recorridos?, ¿y sobre la variabilidad en sus tiempos de recorrido?

Resumen de la lección 10

La media se usa a menudo como una medida de centro de una distribución. La razón de esto es que la media de una distribución se puede ver como su "punto de equilibrio".

¿Por qué es esta una buena forma de pensar en la media? Consideremos un conjunto de datos muy simple: el número de galletas que hornearon cada uno de ocho amigos. Miremos la tabla y el diagrama de puntos de este conjunto. 

19 20 20 21 21 22 22 23
Dot plot for “number of cookies”. The numbers 18 through 24 are indicated. There is a triangle indicated at 21 cookies. The data are as follows:  18 cookies, 0 dots. 19 cookies, 1 dot. 20 cookies, 2 dots. 21 cookies, 2 dots. 22 cookies, 2 dots. 23 cookies, 1 dot. 24 cookies, 0 dots.

Esta distribución es completamente simétrica. La media del número de galletas es 21, porque (19+20+20+21+21+22+22+23)\div8=21 . Si señalamos la ubicación de la media en el diagrama de puntos, podemos ver que los puntos de datos podrían equilibrarse en 21.

En este diagrama, cada punto a cada lado de la media tiene un reflejo o imagen de espejo. Por ejemplo, los dos puntos en 20 y los dos puntos en 22 están a la misma distancia de 21, pero cada par está ubicado en lados diferentes de 21. Podemos pensar en ellos como si se equilibraran uno al otro alrededor del 21.

A dot plot for "number of cookies". The numbers 18 through 24 are indicated. There is a triangle indicated at 21 cookies. There are arrows pointing to the dots at 20 and 22. There are lines indicating the distance between 20 and 21 and the distance between 21 and 22. The data are as follows: 18 cookies, 0 dots. 19 cookies, 1 dot. 20 cookies, 2 dots. 21 cookies, 2 dots. 22 cookies, 2 dots. 23 cookies, 1 dot. 24 cookies, 0 dots.

De forma similar, los puntos en 19 y 23 están a la misma distancia de 21, pero están en lados opuestos. También podemos pensar que estos se están equilibrando alrededor del 21. 

A dot plot for "number of cookies". The numbers 18 through 24 are indicated. There is a triangle indicated at 21 cookies. There are arrows pointing to the dots at 19 and 23. There are lines indicating the distance between 19 and 21 and the distance between 21 and 23. The data are as follows: 18 cookies, 0 dots. 19 cookies, 1 dot. 20 cookies, 2 dots. 21 cookies, 2 dots. 22 cookies, 2 dots. 23 cookies, 1 dot. 24 cookies, 0 dots.

Podemos decir que la distribución de las galletas tiene un centro en 21 porque ese es su punto de equilibrio y que los ocho amigos, en promedio, hornearon 21 galletas.

Incluso cuando una distribución no es completamente simétrica, las distancias de los valores por debajo de la media, en su totalidad, equilibran las distancias de los valores que están por encima de la media.

Términos del glosario

medida de centro

Una medida de centro es un valor que parece ser típico en una distribución de datos.

La media y la mediana son ambas medidas de centro.

Problemas de práctica de la lección 10

  1. En los días de escuela, Kiran camina a la escuela. Estas son las duraciones, en minutos, de los recorridos de Kiran durante 5 días de escuela.

    1. Crea un diagrama de puntos de los datos de Kiran.
    16 11 18 12 13
    1. Sin calcular, decide si 15 minutos sería una buena estimación de la media. Si piensas que es una buena estimación, explica tu razonamiento. Si no, da una mejor estimación y explica tu razonamiento.
    2. Calcula la media de los datos de Kiran.
    3. En la tabla, registra la distancia de cada punto a la media y su posición con respecto a la media.
      tiempo en minutos distancia a la media ¿a la izquierda o a la derecha de la media?
      16
      11
      18
      12
      13
    4. Calcula la suma de todas las distancias a la izquierda de la media, después calcula la suma de todas las distancias a la derecha de la media. Explica cómo estas sumas muestran que la media es un punto de equilibrio de los valores en el conjunto de datos.
  2. Noah anotó 20 puntos en un juego. El puntaje de Mai fue 30 puntos. La media de los puntajes de Noah, Mai y Clare fue 40 puntos. ¿Cuál fue el puntaje de Clare? Explica o muestra tu razonamiento.

  3. Compara los números usando >, < o =.

    1. \text-2 _____ 3
    2. |\text-12| _____ |15|
    1. 3 _____ \text-4
    2. |15| _____ |\text-12|
    1. 7 _____ \text-11
    2. \text-4 _____ |5|
    1. Grafica \frac{2}{3} \frac{3}{4} en una recta numérica.

    2. ¿Es \frac{2}{3} < \frac{3}{4}  o  \frac{3}{4} < \frac{2}{3} ? Explica cómo lo sabes.
  4. Selecciona todas las expresiones que representen el área total del rectángulo grande.

    1. 5(x+y)
    2. 5 + xy
    3. 5x + 5y
    4. 2(5+x + y)
    5. 5xy
    A large rectangle is partitioned by a vertical line segment into 2 smaller rectangles. The left rectangle has a vertical side length of 5 and horizontal side length of x. The right rectangle has horizontal side length of y.