Lección 2Razonemos sobre contextos usando diagramas de cinta (Parte 1)
Usemos diagramas de cinta para dar sentido a diferentes tipos de historias.
Metas de aprendizaje:
- Puedo explicar cómo un diagrama de cinta representa partes de una situación y relaciones entre ellas.
- Puedo usar un diagrama de cinta para encontrar una cantidad desconocida en una situación.
2.1 Recordemos los diagramas de cinta
- ¿Qué observas? ¿Qué te preguntas?
- ¿Cuáles son algunos posibles valores para , , y en el primer diagrama?
¿Y para , y en el segundo diagrama? ¿Cómo decidiste que esos valores eran posibles?
2.2 Cada imagen cuenta una historia
Estas son tres historias, cada una con un diagrama que la representa. Decide con tu grupo quién irá primero. Ese estudiante explicará por qué el diagrama representa la historia. Trabajen juntos para encontrar cualquier cantidad desconocida en la historia. Luego, cambien de papeles para el segundo diagrama y vuelvan a cambiarlos para el tercero.
- Mai hizo 50 volantes para que cinco voluntarios de su club los cuelguen por la escuela. Le entregó 5 volantes al primer voluntario, 18 volantes al segundo voluntario, y repartió los volantes restantes entre los otros 3 voluntarios en partes iguales.
- Para agradecer a sus cinco voluntarios, Mai le entregó a cada uno el mismo número de calcomanías. Luego, le entregó a cada uno dos calcomanías más. En total, Mai les entregó 30 calcomanías.
-
Mai repartió por igual otro grupo de volantes entre los cinco voluntarios. Luego recordó que necesitaba algunos volantes para entregar a los profesores, por lo que tomó 2 volantes de cada voluntario. Al final, los voluntarios tenían un total de 40 volantes para colgar.
2.3 Cada historia necesita una imagen
Estas son otras tres historias. Dibuja un diagrama de cinta para representar cada historia. Luego, describe cómo encontrarías las cantidades desconocidas de las historias.
- Noah y su hermana hacen bolsas de regalo para una fiesta de cumpleaños. Noah coloca 3 borradores en cada bolsa y su hermana coloca calcomanías en cada bolsa. Después de llenar 4 bolsas, han usado un total de 44 objetos.
- La familia de Noah quiere inflar un total de 60 globos para la misma fiesta. Inflaron 24 globos el día de ayer. Para hoy, quieren dividir los globos restantes por igual entre cuatro familiares.
- La familia de Noah compró algunas barras de fruta para poner en las bolsas de regalo. Compraron una caja de cada uno de los cuatro sabores: manzana, fresa, arándano y melocotón. Las cajas tienen la misma cantidad de barras. Noah comió una barra de cada caja porque quería probar todos los sabores, entonces quedan 28 barras para las bolsas de regalo.
¿Estás listo para más?
Diseña un mosaico que tenga un patrón repetitivo que conste de 2 tipos de figuras (p. ej., formar un triángulo con 1 hexágono y 3 triángulos). ¿Cuántas veces se repitió el patrón en tu imagen? ¿Cuántas figuras individuales usaste?
Resumen de la lección 2
Los diagramas de cinta son útiles para representar cómo se relacionan las cantidades y pueden ayudar a responder preguntas sobre una situación.
Imagina que un colegio recibe 46 copias de un libro muy popular. La biblioteca toma 26 copias y las copias restantes se dividen entre 4 profesores en partes iguales. Entonces, ¿cuántos libros recibe cada profesor? Esta situación involucra 4 partes iguales y otra parte. Podemos representar esta situación con un rectángulo etiquetado con 26 (libros entregados a la biblioteca) junto a 4 partes de igual tamaño (libros divididos entre los 4 profesores). Etiquetamos el total, 46, para mostrar cuánto representa el rectángulo en total. Usamos una letra para representar la cantidad desconocida que indica el número de libros que recibe cada profesor. Usar la misma letra, , significa que la misma cantidad se representa 4 veces.
En algunas situaciones hay partes que son iguales, pero se ha aumentado cada parte con respecto a la cantidad original:
En una compañía se elabora un tipo especial de sensor y para su envío se empacan en cajas de a 4. Un nuevo diseño incrementa el peso de cada sensor en 9 gramos, lo que hace que el nuevo paquete de 4 sensores pese 76 gramos. Entonces, ¿cuánto pesaba cada sensor en un principio?
Se puede describir esta situación mediante un rectángulo que representa un total de 76 dividido entre 4 partes iguales. Cada parte muestra que el nuevo peso, , es 9 mayor que el peso original, .
Problemas de práctica de la lección 2
La tabla muestra el número de manzanas y el peso total de las manzanas.
número de manzanas peso de las manzanas (gramos) 2 511 5 1200 8 2016 Estima el peso de 6 manzanas.
Elige todas las historias que el diagrama de cinta puede representar.
- Hay 87 niños y 39 adultos en un espectáculo. Los asientos en el teatro están distribuidos en 4 secciones iguales.
- Hay 87 estudiantes de los primeros grados en la guardería. Después de que recogen a 39 estudiantes, el profesor coloca al resto de los estudiantes en 4 grupos para una actividad.
- Lin compra un paquete de 87 lápices. Le da 39 a su profesor y comparte los lápices restantes entre ella y sus 3 amigos.
- Andre compra 4 paquetes de clips con 39 clips en cada uno. Luego le da 87 clips a su profesor.
- La familia de Diego gasta $87 en 4 tiquetes para la feria y $39 en una cena.
Andre quiere ahorrar $40 y comprar con esto un regalo para su papá. El vecino de Andre le pagará semanalmente por cortar el césped, pero Andre siempre da una donación de $2 al banco de alimentos en las semanas en que gana dinero. Andre calcula que tardará 5 semanas en ganar el dinero para el regalo de su papá. Él dibuja un diagrama de cinta para representar la situación.
- Explica cómo las partes del diagrama de cinta representan la historia.
- ¿Cuánto le paga el vecino a Andre por cortar el césped cada semana?
Sin evaluar cada expresión, decide qué valor es el mayor. Explica cómo lo sabes.
Resuelve cada ecuación.