Lección 5Razonemos sobre ecuaciones y diagramas de cinta (Parte 2)
Usemos diagramas de cinta como ayuda para responder preguntas sobre situaciones en las que la ecuación tiene paréntesis.
Metas de aprendizaje:
- Puedo dibujar un diagrama de cinta para representar una situación que tiene más de una copia de la misma suma y explicar qué representan las partes del diagrama
- Puedo encontrar una solución a una ecuación razonando sobre un diagrama de cinta o sobre qué valor haría que la ecuación fuese verdadera.
5.1 Conversación algebraica: observemos la estructura
Resuelve mentalmente cada ecuación.
5.2 Más situaciones y diagramas
Dibuja un diagrama de cinta para representar cada situación. Para algunas situaciones, debes decidir qué representar con una variable.
- 5 bolsas de regalo tienen lápices cada una. Tyler agrega 3 lápices más a cada bolsa. Juntas, las bolsas de regalo contienen 20 lápices.
- Noah dibujó un triángulo equilátero con lados de 5 pulgadas de longitud. Noah quiere aumentar la longitud de cada lado en pulgadas para que el triángulo siga siendo equilátero y tenga un perímetro de 20 pulgadas.
- En una clase de arte se cobra $3 a cada estudiante por asistir, más una tarifa por los materiales. El día de hoy, se recogieron $20 por los 5 estudiantes que asistieron a la clase.
- Elena corrió 20 millas esta semana, que fue tres veces lo que Clare corrió esta semana. Clare corrió 5 millas más esta semana que la semana pasada.
5.3 Más situaciones, diagramas y ecuaciones
Cada situación en la actividad anterior se representaba por una de las ecuaciones.
- Asocia cada situación con una ecuación.
- Encuentra la solución a cada ecuación. Usa tus diagramas como ayuda para razonar.
- ¿Qué te dice la solución sobre su situación correspondiente?
¿Estás listo para más?
Han, su hermana, su papá y su abuela se suben a un bus con mucha gente; solo hay 3 asientos disponibles para un viaje de 42 minutos. Deciden que la abuela de Han debe sentarse durante todo el viaje. Han, su hermana, y su papá se turnan para sentarse en las otras dos sillas. El papá de Han se sienta 1.5 veces el tiempo que se sientan Han y su hermana. ¿Cuántos minutos permaneció sentado cada uno?
Resumen de la lección 5
Las ecuaciones con paréntesis pueden representar varias situaciones.
- Lin es voluntaria en un hospital y está preparando canastas de juguetes para niños que son pacientes. Ella agrega 2 artículos a cada canasta y después de esto, la lista del supervisor muestra que se empacaron 140 juguetes en un grupo de 10 canastas. Lin quiere saber cuántos juguetes había en cada canasta antes de agregar los artículos.
- Un gran almacén tiene el mismo número de trabajadores en 2 equipos para cubrir turnos diferentes. El almacén decide agregar 10 trabajadores a cada equipo, haciendo que el número total de trabajadores llegue a 140. Un ejecutivo de la compañía que dirige esta cadena de almacenes quiere saber cuántos empleados había en cada equipo antes del aumento.
En la primera historia, cada canasta tiene una cantidad desconocida de juguetes, , que aumenta en 2. Luego, diez canastas de da un total de 140 juguetes. Una ecuación que representa esta situación es . Como 10 veces un número es 140, ese número es 14, que es el número total de artículos en cada bolsa. Antes de que Lin agregara los 2 artículos, había o 12 juguetes en cada canasta.
En la segunda historia, el ejecutivo sabe que el número en cada equipo de empleados ha aumentado en 10. Entonces, hay 2 equipos de cada uno. Una ecuación que representa esta situación es . Como 2 veces una cantidad es 140, esa cantidad es 70, que es el nuevo tamaño de cada equipo. El valor de es o 60. Antes del aumento había 60 empleados en cada equipo.
Problemas de práctica de la lección 5
Estos son algunos precios que los clientes pagaron por diferentes artículos en un mercado agrícola. Encuentra el costo por libra de cada artículo.
- $5 por 4 libras de manzanas
- $3.50 por libra de queso
- $8.25 por libra de granos de café
- $6.75 por libras de dulce de azúcar
- $5.50 por libras de calabaza
Halla los productos.
Estas son dos historias:
- Una familia compra 6 boletos para un espectáculo. Además, cada miembro gasta $3 en un pasabocas. En total gastan $24 en el espectáculo.
- Diego tiene 24 onzas de jugo. Sirve cantidades iguales de jugo a cada uno de sus 3 amigos, después agrega 6 onzas más a cada amigo.
Estas son dos ecuaciones:
- ¿Cuál ecuación representa cuál historia?
- ¿Qué representa en cada ecuación?
- Encuentra la solución de cada ecuación. Explica o muestra tu razonamiento.
- ¿Qué te dice cada solución acerca de la situación?
Este es un diagrama junto con su ecuación correspondiente. Encuentra la solución a la ecuación y explica tu razonamiento.
A continuación hay un conjunto de datos sobre temperaturas. El rango de un conjunto de datos es la distancia entre el menor valor y el mayor valor en el conjunto. ¿Cuál es el rango de estas temperaturas?
Una tienda ofrece un 25% de descuento en todas sus camisas. Muestra dos formas diferentes de calcular el precio de venta de una camisa que normalmente cuesta $24.