Lección 4Razonemos sobre ecuaciones y diagramas de cinta (Parte 1)
Observemos cómo los diagramas de cinta pueden ayudarnos a responder preguntas sobre cantidades desconocidas en unas historias.
Metas de aprendizaje:
- Puedo dibujar un diagrama de cinta para representar una situación que tiene una cantidad conocida y varias copias de una cantidad desconocida, y explicar qué representan las partes del diagrama.
- Puedo encontrar una solución a una ecuación razonando sobre un diagrama de cinta o sobre qué valor haría que la ecuación fuese verdadera.
4.1 Conversación algebraica: observemos la estructura
Encuentra una solución para cada ecuación sin escribir nada.
4.2 Situaciones y diagramas
Dibuja un diagrama de cinta para representar cada situación. Para algunas situaciones, debes decidir qué representar con una variable.
- Diego tiene 7 paquetes de marcadores y en cada paquete hay marcadores. Luego de que Lin le entregara 9 marcadores más, Diego tiene un total de 30 marcadores.
- Elena está cortando un pedazo de cinta de 30 pies para un proyecto de arte. Ella primero corta 7 pies, y luego corta el pedazo restante en 9 partes iguales de pies de longitud cada una.
- Un gerente de construcción pesa un paquete de 9 ladrillos idénticos y un bloque de cemento de 7 libras. El paquete pesa 30 libras.
- En una pista de patinaje se cobra una tarifa de $9 por grupo, más un precio por alquilar cada par de patines. Una familia alquila 7 pares de patines y paga un total de $30.
- Andre hornea 9 bandejas de brownies. Él le dona 7 bandejas a la feria de pastelería de la escuela y se queda con el resto para dividirlo por igual entre los 30 estudiantes de su clase.
4.3 Situaciones, diagramas y ecuaciones
Cada situación en la actividad anterior se representaba por una de las ecuaciones.
- Empareja cada situación con una ecuación.
- Encuentra la solución a cada ecuación. Usa tus diagramas como ayuda para razonar.
- ¿Qué te dice la solución sobre cada situación?
¿Estás listo para más?
Para un grupo de amigos en la ciudad de Nueva York, ¿es mejor tomar un taxi o tomar el metro para ir desde el edificio Empire State al museo metropolitano de arte? Explica tu razonamiento.
Resumen de la lección 4
Muchas situaciones se pueden representar con ecuaciones. Escribir una ecuación para representar una situación puede ayudarnos a expresar cómo las cantidades en la situación se relacionan entre ellas. También, puede ayudarnos a razonar sobre cantidades desconocidas cuyos valores queremos saber. Estas son tres situaciones:
-
Un arquitecto está elaborando los planos para un nuevo supermercado. En este habrá un espacio de 144 pulgadas de longitud para filas de carritos de supermercado encajados. El primer carrito tiene 34 pulgadas de longitud y cada carrito encajado suma otras 10 pulgadas. El arquitecto desea saber cuántos carritos de supermercado caben en cada fila.
-
En una panadería se compra una bolsa grande de azúcar que tiene 34 tazas. Ellos usan 10 tazas para hacer algunas galletas. Luego usan el resto de la bolsa para hacer 144 muffins gigantes. Los clientes de la panadería quieren saber cuánto azúcar tiene cada muffin.
-
Kiran está intentando ahorrar $144 para comprar una guitarra nueva. Él tiene $34 y ahorrará $10 a la semana con el dinero que gane por cortar césped. Kiran quiere saber en cuántas semanas tendrá el dinero suficiente para comprar la guitarra.
En las situaciones observamos los mismos tres números: 10, 34 y 144. ¿Cómo podríamos representar cada situación con una ecuación?
En la primera situación, hay un carrito de supermercado que tiene 34 pulgadas de longitud y luego un número desconocido de carritos con una longitud de 10 cada uno. De manera similar, Kiran tiene ahorrados 34 dólares y luego el ahorrará 10 dólares cada semana durante un número desconocido de semanas. Estas dos situaciones tienen una parte de 34 y luego partes iguales de tamaño 10, que al ser sumadas nos da un total de 144. La ecuación es .
Como se necesitan 11 grupos de 10 para pasar de 34 a 144, el valor de en estas dos situaciones es o 11. En el supermercado habrá 11 carritos en cada fila, y Kiran tardará 11 semanas para recaudar el dinero para su guitarra.
En la situación de la panadería, hay una parte de 10 y luego 144 partes iguales con tamaño desconocido, que al ser sumadas nos da un total de 34. La ecuación es . Como se necesitan 24 para pasar de 10 a 34, el valor de es o . Entonces, hay tazas de azúcar en cada muffin gigante.
Problemas de práctica de la lección 4
Dibuja un cuadrado con lado de longitud 7 cm.
- Predice el perímetro y la longitud de la diagonal del cuadrado.
- Mide el perímetro y la longitud de la diagonal del cuadrado.
- Describe qué tan parecidas son las predicciones y las mediciones.
Halla los productos.
Estas son tres historías:
- Una familia compra 6 boletos para un espectáculo y además pagan $3 por el estacionamiento. Gastan $27 para ver el espectáculo.
- Diego tiene 27 onzas de jugo. Le sirve cantidades iguales de jugo a cada uno de sus 3 amigos y quedan 6 onzas para él.
- Jada trabaja 6 horas preparándose para la feria de arte. Gasta 3 horas en una escultura y luego pinta 27 cuadros.
Estas son tres ecuaciones:
- Decide cuál ecuación representa cada historia. ¿Qué representa en cada ecuación?
- Encuentra la solución para cada ecuación. Explica o muestra tu razonamiento.
- ¿Qué te dice cada solución acerca de la situación?
Este es un diagrama junto con su ecuación correspondiente. Encuentra la solución a la ecuación y explica tu razonamiento.
- Ubica estos puntos en el plano de coordenadas:
- ¿Cuál es la diferencia vertical entre y ?
- Escribe una expresión que represente la distancia vertical entre y .
- Ubica estos puntos en el plano de coordenadas: