Lección 16Estimemos proporciones de poblaciones

Estimemos proporciones de poblaciones usando muestras.

Metas de aprendizaje:

  • Puedo estimar la proporción de los datos de la población que están en cierta categoría basado en una muestra.

16.1 Camino a la escuela

Un profesor le preguntó a todos los estudiantes de una clase cuántos minutos tardan en desplazarse hacia la escuela. Esta es una tabla con sus respuestas:

20 10 15 8 5 15 10 5 20 5 15 10
3 10 18 5 25 5 5 12 10 30 5 10
  1. Determina qué fracción de los estudiantes de esta clase dice que:

    1. tardan 5 minutos en desplazarse hacia la escuela
    2. tardan más de 10 minutos en desplazarse hacia la escuela
  2. Si hay 720 estudiantes en toda la escuela, ¿puedes usar estos datos para estimar cuántos de ellos dirían que tardan más de 10 minutos en desplazarse hacia la escuela?

    Prepárate para explicar tu razonamiento.

16.2 Tiempos de reacción

El entrenador de atletismo de una preparatoria necesita un estudiante que tenga un tiempo de reacción menor que 0.4 segundos para que ayude en los entrenamientos. Se midió el tiempo de reacción de todos los estudiantes de decimosegundo grado de la escuela. Tu profesor te dará una bolsa con papeles que tienen sus resultados.

  1. Trabaja con tu compañero para seleccionar una muestra aleatoria de 20 tiempos de reacción y anótalos en la tabla.
  2. ¿Qué proporción de tu muestra es menor que 0.4 segundos?
  3. Estima la proporción de todos los estudiantes de decimosegundo grado de esta escuela que tienen un tiempo de reacción menor que 0.4 segundos. Explica tu razonamiento.
  4. Hay 120 estudiantes de decimosegundo grado en esta escuela. Estima cuántos de ellos tienen un tiempo de reacción menor que 0.4 segundos.
  5. Supongamos que otro grupo de tu clase hizo una estimación diferente a la tuya para la pregunta anterior.

    1. ¿Qué otra estimación sería razonable?

    2. ¿Qué estimación considerarías poco razonable?

16.3 Un nuevo héroe de cómic

Estos son los resultados de una encuesta realizada a 20 personas que leen Las aventuras de Súper Sam sobre qué habilidad especial piensan que debería tener el nuevo superhéroe.

respuesta ¿qué habilidad nueva?
1 volar
2 congelar
3 congelar
4 volar
5 volar
6 congelar
7 volar
8 superfuerza
9 congelar
10 volar
respuesta ¿qué habilidad nueva?
11 congelar
12 congelar
13 volar
14 invisibilidad
15 congelar
16 volar
17 congelar
18 volar
19 superfuerza
20 congelar
  1. ¿Qué proporción de esta muestra quiere que el nuevo superhéroe tenga la habilidad de volar?
  2. Si hay 2,024 lectores frecuentes de Las aventuras de Súper Sam, estimen el número de lectores frecuentes que quieren que el nuevo héroe pueda volar.

Otros dos libros de cómics hicieron una encuesta parecida a sus lectores.

  • En una encuesta realizada a la gente que lee Más que humano, 42 de 60 personas quieren que el nuevo superhéroe pueda volar.
  • En una encuesta realizada a la gente que lee Planetas misteriosos, 14 de 40 personas quieren que el nuevo superhéroe pueda volar.
“Flame 002” por Will Eisner (pencils) and Lou Fine (inks), uploaded by Roygbiv666 (Public Domain Super Heroes) vía Wikimedia Commons. Dominio público.
  1. ¿Creen que la proporción de todos los lectores que quieren a un nuevo superhéroe que pueda volar es casi la misma para los tres cómics? Expliquen su razonamiento.
  2. Si estuvieran a cargo de estos tres cómics, ¿le darían la habilidad de volar a alguno de los nuevos héroes? Expliquen su razonamiento usando las proporciones que calcularon.

16.4 Volar a los estantes

Los autores de Las aventuras de Súper Sam escogieron 50 muestras aleatorias diferentes de lectores. Cada muestra tenía 20 valores. Para cada muestra, ellos observaron la proporción de lectores que prefiere que el nuevo héroe pueda volar.

A dot plot for “sample proportions for The Adventures of Super Sam” with the numbers 0 point 1 through 0 point 55, in increments of zero point zero 5, indicated. The data are as follows:  0 point 1, 3 dots. 0 point 1 5, 3 dots. 0 point 2, 11 dots. 0 point 2 5, 10 dots. 0 point 3, 8 dots. 0 point 3 5, 7 dots. 0 point 4, 4 dots. 0 point 4 5, 2 dots. 0 point 5, 1 dot. 0 point 5 5, 1 dot.
  1. ¿Cuál es una buena estimación para la proporción de todos los lectores que quieren que el nuevo héroe pueda volar?
  2. ¿La mayoría de las proporciones de las muestras están a 0.1 o menos de tu estimación para la proporción de la población?

  3. Si los autores del cómic le dieran al nuevo héroe la habilidad de volar, ¿esto complacería a la mayoría de los lectores? Explica tu razonamiento.

Los autores de las otras series de cómics elaboraron diagramas de puntos similares.

A dot plot for “sample proportions for Beyond Human” with the numbers 0 point 6 through 0 point 8 5, in increments of zero point zero 5, indicated. The data are as follows: 0 point 6 3, 1 dot. 0 point 6 5, 2 dots. 0 point 6 7, 3 dots. 0 point 6 9, 4 dots. 0 point 7, 5 dots. 0 point 7 2, 6 dots. 0 point 7 4, 6 dots. 0 point 7 5, 5 dots. 0 point 7 7, 7 dots. 0 point 7 8, 6 dots. 0 point 8, 3 dots 0 point 8 2, 1 dot. 0 point 8 4, 1 dot.
A dot plot for “sample proportions for Mysterious Planets” with the numbers 0 point 3 through 0 point 7, in increments of 0 point 5, indicated. The data are as follows:  0 point 3 3, 1 dot. 0 point 3 5, 2 dots. 0 point 3 8, 5 dots. 0 point 4, 2 dots. 0 point 4 3, 6 dots. 0 point 4 5, 4 dots. 0 point 4 8, 7 dots. 0 point 5, 3 dots. 0 point 5 3, 6 dots. 0 point 5 5, 5 dots. 0 point 6, 3 dots. 0 point 6 3, 2 dots. 0 point 6 5, 2 dots. 0 point 6 7, 2 dots.
  1. Para cada una de estas series, estima la proporción de todos los lectores que quieren que el nuevo héroe vuele.

    1. Más que humano:
    2. Planetas misteriosos:
  2. ¿Los autores de alguna de estas series deberían dar la habilidad de volar a su nuevo héroe?
  3. ¿Por qué puede ser más difícil para los autores de Planetas misteriosos tomar esta decisión que para los autores de las otras series?

¿Estás listo para más?

Dibuja un ejemplo de un diagrama de puntos que tenga por lo menos 20 puntos que representen las proporciones de varias muestras aleatorias diferentes y que indiquen que la proporción de la población está por encima de 0.6, pero que muestre que hay mucha incertidumbre sobre esa estimación.

Resumen de la lección 16

Algunas veces un conjunto de datos se compone de información que se puede dividir en categorías específicas. Por ejemplo, podríamos hacer una encuesta a los estudiantes y preguntarles si tienen un perro o un gato como mascota. Las categorías para estos datos pueden ser {ninguno, solamente perro, solamente gato, ambos}. Supongamos que encuestamos a 10 estudiantes. Esta es una tabla que muestra los posibles resultados:

opción número de respuestas
ni perro ni gato 2
solamente perro 4
solamente gato 1
ambos, perro y gato 3

En esta muestra, 3 de los estudiantes dijeron que tienen ambos, un perro y un gato. Podemos decir que la proporción de los estudiantes que tienen un perro y un gato es  \frac{3}{10} o 0.3. Si esta muestra es representativa de todos los 720 estudiantes de la escuela, podemos predecir que aproximadamente \frac{3}{10} de 720 o aproximadamente 216 estudiantes de la escuela tienen un perro y un gato.

En general, una proporción es un número entre 0 y 1 que representa la fracción de los datos que pertenecen a una categoría dada.

Términos del glosario

proporción

Una proporción de un conjunto de datos es la fracción de los datos en una categoría dada.

Por ejemplo, una clase tiene 20 estudiantes. Hay 2 estudiantes zurdos y 18 estudiantes diestros en la clase. La proporción de estudiantes que son zurdos es  \frac{2}{20} , es decir 0.1.

Problemas de práctica de la lección 16

  1. Tyler se pregunta qué proporción de estudiantes en su escuela se teñirían el cabello de azul si sus padres lo permitieran. Él encuestó a una muestra aleatoria de 10 estudiantes en su escuela y 2 de ellos dijeron que lo harían. Kiran no pensó que la estimación de Tyler era acertada, así que él encuestó a una muestra aleatoria de 100 estudiantes y 17 de ellos dijeron que lo harían.

    1. Basado en la muestra de Tyler, estima qué proporción de estudiantes se teñirían el cabello azul. 

    2. Basado en la muestra de Kiran, estima qué proporción de estudiantes se teñirían el cabello azul. 

    3. ¿La estimación de quién es más acertada? Explica cómo lo sabes.

  2. Han encuesta a una muestra aleatoria de estudiantes sobre su plato de pasta favorito servido en la cafetería y hace un gráfico de barras de los resultados.

    Estima la proporción de los estudiantes que prefiere lasaña como su plato de pasta favorito.
  3. Elena quiere saber qué proporción de gente tiene gatos como mascotas. Describe un proceso que ella podría usar para estimar una respuesta a su pregunta.

  4. El profesor de Ciencias deja tarea diariamente. Para una muestra aleatoria de los días durante el año, la mediana del número de ejercicios es 5 y el IQR es 2. El profesor de Español también deja tarea diariamente. Para una muestra aleatoria de los días durante el año, la mediana del número de ejercicios es 10 y el IQR es 1. Si estimas que la mediana del número de ejercicios de la tarea de Ciencias es 5 y la mediana del número de ejercicios de la tarea de Español es 10, ¿cuál es más probable que sea acertado? Explica tu razonamiento.

  5. Diego quiere encuestar una muestra de estudiantes de su escuela para conocer el porcentaje de estudiantes que están satisfechos con la comida de la cafetería. Él decide ir a la cafetería un lunes y preguntar a los primeros 25 estudiantes que compren un almuerzo en la cafetería si están satisfechos con la comida.

    ¿Piensas que esta es una buena forma para que Diego seleccione su muestra? Explica tu razonamiento.