Lección 11Hallemos distancias en el plano de coordenadas
Hallemos distancias en el plano de coordenadas.
Metas de aprendizaje:
- Puedo hallar la distancia entre dos puntos del plano de coordenadas.
- Puedo hallar la longitud de un segmento de recta diagonal en el plano de coordenadas.
11.1 La distancia más corta
- Ordena los siguientes pares de puntos de los más cercanos a los más lejanos. Prepárate para explicar tu razonamiento.
-
y
-
y
-
y
-
y
-
y
-
-
Nombra otro par de puntos que estén más cerca que el primer par de tu lista.
-
Nombra otro par de puntos que estén más lejos que el último par de tu lista.
11.2 ¿Qué tan lejos?
Halla las distancias entre los tres puntos que se muestran.
11.3 Perímetros con Pitágoras
-
¿Cuál figura crees que tiene el perímetro más largo?
- Escoge una figura y calcula su perímetro. Tu compañero calculará el perímetro de la otra. ¿Acertaste sobre cuál figura tenía el perímetro más largo?
¿Estás listo para más?
El cuadrilátero tiene vértices en , , y .
- Usa el teorema de Pitágoras para hallar las longitudes de los lados , , y .
- Usa el teorema de Pitágoras para hallar las longitudes de las dos diagonales, y .
-
Explica por qué el cuadrilátero es un rectángulo.
11.4 Hallemos la distancia correcta
Cada persona de tu grupo debe escoger uno de los pares de puntos que se muestran aquí. Luego, cada uno debe calcular la longitud del segmento de recta que queda entre esos dos pares de puntos. Una vez que hayan calculado los valores, cada persona del grupo debe compartir brevemente cómo realizó sus cálculos.
-
y
-
y
-
y
-
y
- ¿En qué se parece o se diferencia el valor que hallaste de los valores del resto de tu grupo?
-
Con tus propias palabras, escribe una explicación para otro estudiante de cómo hallar la distancia entre dos pares de puntos cualesquiera.
Resumen de la lección 11
Podemos utilizar el teorema de Pitágoras para hallar la distancia entre cualquier par de puntos en el plano de coordenadas. Por ejemplo, si las coordenadas del punto son y las coordenadas del punto son , hallemos la distancia entre ellos. Esta distancia también es la longitud del segmento de recta . Es una buena idea graficar los puntos primero.
Piensa en la distancia entre y , o en la longitud del segmento , como la hipotenusa de un triángulo rectángulo. Las longitudes de los catetos se pueden deducir a partir de las coordenadas de los puntos.
Una vez que se conocen los catetos, utilizamos el teorema de Pitágoras para hallar la longitud de la hipotenusa, , que podemos representar con . Como es un número positivo, solo hay un valor que puede tomar:
Esta longitud es un poco mayor que 9, ya que 85 es un poco mayor que 81. Al utilizar una calculadora obtenemos una respuesta más precisa, .
Problemas de práctica de la lección 11
Estos triángulos rectángulos están dibujados en el plano de coordenadas y las coordenadas de sus vértices están etiquetadas. Para cada triángulo rectángulo, etiqueta cada cateto con su longitud.
Halla la distancia entre cada par de puntos. Si te estancas, intenta graficar los puntos en papel cuadriculado.
- y
- y
-
y
¿Cuál recta tiene una pendiente de 0.625 y cuál recta tiene una pendiente de 1.6? Explica por qué las pendientes de estas rectas son 0.625 y 1.6.
Escribe una ecuación para el gráfico.